1» TiDB

GenAl Data Pipelines:

The Engineer's Guide to
Database Selection

1 TiDB

Table of Contents

Table of Contents 2
Prologue 3
Why traditional databases aren’t up to the GenAl job 3
Core GenAl database concepts 5
Vector embeddings 5
Semantic search 5
Context windows 5
GenAl database use cases 6
RAG (Retrieval Augmented Generation) 6
Similarity search 8
Fine-tuning and model training 9
Memory for Stateful Al Agents n
Database technologies powering genAl applications 13
Vector databases 13
Document stores 14
Relational databases 15
Databases with integrated vector search 16

How the GenAl data pipeline differs from ETL 17

The stages of the GenAl data pipeline 17
Data ingestion 18

Content extraction and cleaning 18

Text chunking and segmentation 19
Embedding generation 19

Vector indexing and storage 20

Metadata indexing 20

Query processing and retrieval 21
Feedback integration and pipeline optimization 21

Making the right GenAl database choice in 3 steps 22
Step 1: What is your primary use case? 22
Step 2: Assess your operational reality 22
Step 3: Make your technology decision 22
Unifying your GenAl data infrastructure with TiDB Serverless 23
The challenge 23
TiDB Serverless: Simplifying your GenAl data architecture 23
Integrated vector search and SQL 23
Developer-friendly experience 23
Operational advantages 24
Real-world impact: Dify.Al 24

When TiDB Serverless makes sense 24
Appendix 25

Your guide to GenAl database terminology 25
Fundamentals 25
Vector storage and retrieval 25

RAG database concepts 25
Integration patterns 26
Performance considerations 26

tidb.io 2

Prologue

Generative Al presents us with a challenge. It has the potential to be the most transformative new
technology of this century so far, while also demanding potentially disruptive changes in how we
work with data.

Whether it's creating intelligent search that understands natural language, building virtual
assistants that can respond to users conversationally, or analyzing large datasets to extract
insights and make predictions, GenAl forces us to look for new tools, rethink our workflows, and
navigate a different set of trade-offs.

In this guide, we'll look at the fundamentals of GenAl database use cases, the flow and
technologies in a typical GenAl data pipeline, and share insights on selecting the right data tools

for your GenAl projects.

Why traditional databases aren’t up to the GenAl
job

GenAl changes the rules for how we work with and think about data. Up until now, most apps have
relied on getting predictable responses from data.

But with GenA|, the rules have changed. Al-based apps need to pull in massive amounts of
context, process unstructured information, and generate responses that feel natural and
meaningful.

The challenge is that conventional databases were designed for precise, deterministic querying
and that makes it harder for them to model, store, and query data in ways that support the needs
of GenAl applications.

But relational, document, time series, and other more traditional databases still have a place in
GenAl data pipelines. Alongside newcomers that support vector embeddings and semantic search,
they form part of a new data ecosystem.

While traditional systems handle structured data efficiently, this new landscape demands
capabilities beyond what conventional databases were designed to provide.

As you assemble your GenAl data stack, here are three key areas where your combined tools need

to deliver:

tidb.io 3

e Context: Traditional databases are great at finding exact matches, but terrible at

understanding meaning. GenAl needs to know that "delivery speed” and "shipping times"
are practically the same thing—something standard B-tree indexes simply can't handle.
Instead, we need systems built for finding similar concepts, not just identical words.

e Fluidity: GenAl can't wait for overnight batch updates. It needs to absorb new information
constantly and use it immediately. This requires databases that can ingest, index, and make
new data available for queries almost instantly, all without sacrificing performance.

e Structure: Al systems need to traverse relationships that traditional data models weren't
designed to express. Relational databases normalized data for consistency, NoSQL
denormalized for scalability—both requiring explicit schema decisions. GenAl works with
emergent structures where relationships aren't manually defined but discovered. This shift
from intentional to emergent structure requires systems that can work with the fuzzy,
probabilistic nature of Al rather than the deterministic logic that conventional databases
were built around.

With so many cloud services and open source projects now claiming to be "GenAl-ready,” it's easy
to get lost in the marketing noise. What's harder is knowing which ones actually deliver.

In this report, we'll skip the hype and give you the real story—showing exactly which database
technologies excel at specific GenAl workloads, where they shine brightest, and where they

struggle when put to the test in production environments.

tidb.io 4

Core GenAl database concepts

Vector embeddings

This is the foundation of
how Al "understands”

meaning.

You are only responsible for
the security of the
application you develop
and the security of your
own business data. Based
on the Saa$S database
service platform of TiDB
Cloud, you also need to
configure security for the
database cluster you
create, such as: setting the
database cluster user role,
setting the network access
control of the database,
doing any customizing, and
selecting the database

encryption method.

tidb.io

Semantic search

Using vector embeddings to
search by meaning

Lexical search has served us
well for decades, but it has
clear limitations. Without
manual metadata tagging, it
can only match literal strings or
their fragments. Semantic
search brings it closer to how
humans think. Instead of
matching words, it uses vector
embeddings to measure the
conceptual distance between
queries and the content in
vector space. Mathematical
tools such as dot product,
Euclidean distance, and cosine
similarity enable us to get
results for “delivery time” even
if the user searches for

"shipping speed".

Context windows

The working memory of an LLM

LLMs have a short-term
memory problem. While their
training gives them vast
knowledge, conversations are
limited by how much new
information they can track.
Think of it like the difference
between your laptop’s storage
versus its RAM, or solving
complex math without
paper—you know the concepts
but lose track of steps.

This "context window" (typically
8,000-128,000 tokens—where
a token is roughly 4 characters)
can be a big influence on how
you use databases in your
GenAl apps. For example, you
might need to break
documents into smaller pieces
("chunking") so your app can
pass only the relevant portions

to the LLM.

GenAl database use cases

We're living through a moment of great creativity when it comes to GenAl. Solo developers, indie
teams, and larger corporations are racing to build innovative applications on top of Al models. But
beneath all this experimentation, how these apps actually use data tends to fall into a few
recognizable patterns.

Let's look at four of the most common ways that GenAl applications put their databases to work in

the real world.

RAG (Retrieval Augmented Generation)

What it is: A technique for giving an LLM the exact context it needs for your query, on top of its
base training.

Why it's needed: LLMs like GPT-4 are trained on a fixed dataset. That leads to two limitations:
there’s a knowledge cut-off date and they don’t have access to your specific data—whether
that's company policies, individual customer history, or industry-specific insights. RAG
overcomes this by dynamically retrieving chunks of text from your database (this is the R in
RAG) and then adding them to your query (the AG). That way, the LLM gets additional context so
that it can answer questions that aren’t covered by its existing training.

Example: A customer service chatbot that uses individual customer history and similar cases to

provide the LLM with data that isn't available in its training.

How it works with databases: RAG depends on databases to store, search, and retrieve
relevant context at query time. This often involves vector databases for semantic search,
relational databases for more structured data, or both.

A typical RAG workflow looks like this:

e Analyze the query: Decide what type of additional data will best support the query.
This is where you'll choose what dataset to rely on and, by extension, the type of
database you'll be using to retrieve it.

e Retrieve the data: Let's say you're looking for context from customer chat histories. You
might:

o Query a document or relational database directly: If you need a specific

customer’s chat history.

tidb.io 6

Query s

o Run asemantic search in a vector database: If you want to retrieve multiple

customer conversations that cover a particular topic.
Make the augmented query: Once you have the additional context, add it to the
original prompt you submit to the LLM. Typically, you'll structure the prompt to guide the
LLM on how to use the additional information provided by the RAG process.

peed and efficient indexing are critical—slow retrieval means slow Al responses, directly

impacting user experience.

Best database types for RAG:

tidb.io

Vector databases: Make the semantic connections needed by RAG. They index
embeddings and find content based on similar meaning, enabling Al to discover relevant
information even when keywords don't match.

Document stores: Handle the actual content chunks fed into your LLM during
augmentation. While great at managing unstructured text at scale, they need vector
capabilities layered on top to make that content semantically accessible for RAG.
Relational databases: Add precision when your Al responses require structured data
points. This is handy when you need to ground responses in exact facts, such as
customer records, product details, or financial data.

Time series databases: Become valuable only when temporal patterns matter to your
use case, such as industrial IoT sensor readings. Most RAG implementations won't need
this specialized capability unless your domain requires historical trend analysis or
time-sensitive context.

Databases with integrated vector search: Support similarity search by offering
multiple ways to query existing data, including vector search of document or relational
data. This differs from extensions like pgvector for PostgreSQL in that vector search is a

first-class part of the software.

Similarity search

What it is: Similarity search is the foundational use case for databases in GenAl applications.
Not only does it enable RAG systems to find relevant context, but it powers everything from
semantic search to recommendation engines. While techniques like TF-IDF (Term Frequency

Inverse Document Frequency) and LSH (Locality Sensitive Hashing) enabled similar functionality

with traditional databases, they relied on manual feature engineering and explicit similarity

definitions. With vector databases, it's the embedding process that allows those semantic
relationships to emerge naturally from the data.

Why it's needed: Lexical search can miss the mark when users expect results that understand
intent rather than just matching words. Whether it's powering semantic search,
recommendations, or anomaly detection, similarity search helps surface the most relevant
results—even when the wording isn't an exact match.

Example: A music streaming service that identifies songs with similar acoustic patterns to your
favorites, discovering tracks you'll enjoy based on audio characteristics rather than just

metadata tags.

How it works with databases:

1. Convert content to vectors: Both your database content and search queries are
transformed into vector embeddings—the numerical representations of meaning that we
looked at earlier.

2. Measure distances between vectors: When a user searches, the system calculates
how “close” their query vector is to each data vector in the database. Similar concepts
have vectors that are closer together.

3. Use approximation for speed: Since exact distance computation across millions of
vectors would be too slow for most applications, vector databases use specialized
indexing approaches like HNSW (Hierarchical Navigable Small World) to efficiently find
the closest matches.

4. Combine with metadata filtering: Most real-world applications narrow vector search
with filters—limiting results by date range, category, or other metadata attributes before
performing similarity calculations.

5. Return ranked results: The system gives you back those data points whose vectors are

closest to the query, ranked by similarity.

tidb.io 8

https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Locality-sensitive_hashing

Best database types for similarity search:

e Vector databases: Purpose-built for embedding storage and retrieval, providing the
performance and specialized indexing needed for large-scale similarity operations that
power GenAl applications.

e Document stores: House the primary content and metadata, with vector capabilities
increasingly built in to enable semantic search directly on the data repository without
maintaining separate systems.

e Relational databases: Where your data lives primarily in a relational database, you can
use a dedicated vector database or vector extensions to support similarity search over
existing relational models.

e Time series databases: \When paired with a vector database to enable similarity search
across temporal data, converting time-series segments into embeddings, this allows you
to find patterns in sensor data, market movements, or user behavior that are
semantically similar despite differences in absolute values or timing.

e Databases with integrated vector search: Combine vector search with either the
relational or document model in a single system. This simplifies your architecture and

can reduce latency.

Fine-tuning and model training

What it is: Pre-trained LLMs are great generalists, but they don't start off knowing the specifics
of your domain. Fine-tuning updates a model's internal weights by training it on your proprietary
data, making it permanently better at understanding specialized terminology, company policies,
or unique workflows.

Unlike RAG, which retrieves external information at query time, fine-tuning bakes knowledge
directly into the model, improving its baseline understanding and response quality.

Why it's needed: RAG can be a good first step when it comes to providing the LLM with
information it wouldn't have otherwise. But it's not always possible to include all the data you
need within a model's context window. Fine-tuning requires some up-front preparation but, in
return, it can deliver more precise responses with few hallucinations. That makes it a good fit for

applications where precision is important, such as legal, healthcare, and finance.

tidb.io 9

Example: A radiology GenAl app trained on a hospital's database of labeled scans that learns to

detect specific conditions with higher accuracy than generic models, adapting to the facility’s

equipment and patient demographics.

How it works with databases: Fine-tuning depends on high-quality, well-structured training

data, typically pulled from a mix of structured and unstructured sources. The database

architectures you choose will directly impact your training pipeline's efficiency and the resulting

model quality.

A typical fine-tuning workflow looks like this:

1.

Data collection and preparation: Extract relevant examples from your databases. This
could be question-answer pairs, categorized documents, or specialized domain content.
Data transformation and cleaning: Convert raw data into training formats, often
involving filtering, deduplication, and normalization.

Training data validation: Analyze your dataset for quality issues, bias, or gaps in
coverage. Vector databases can help identify semantic redundancies or
underrepresented concepts in your training data.

Batch processing for training: During the actual fine-tuning process, your database
must efficiently deliver batches of examples to the training pipeline. Slow data retrieval
becomes the bottleneck that limits GPU utilization and extends training time.

Model evaluation with test data: Your database needs to efficiently store and retrieve
separate test examples that weren't used in training. This allows you to regularly check if

your model is actually improving on real-world data, not just the examples it trained on.

You can perform fine-tuning on open source models you host yourself and on public models

through dedicated APls.

Best database types for similarity search:

tidb.io

Vector databases: Analyze your training data's semantic coverage to identify gaps and
redundancies. When fine-tuning a legal Al, vector databases can visualize how your
contract examples cluster in embedding space—revealing that you have abundant NDAs
but lack partnership agreements entirely. This semantic analysis helps create balanced
datasets that cover your domain thoroughly without wasting compute on repetitive
examples that don't improve model performance.

Document stores: Manage the unstructured text that forms the foundation of most

fine-tuning datasets. A healthcare company fine-tuning on medical literature uses

10

document stores to organize millions of articles and clinical notes, track which content

has been processed, and efficiently deliver training batches to the pipeline. This
becomes crucial as datasets grow to terabytes in size where file-based approaches
begin to break down.

e Relational databases: Maintain factual consistency across training examples by
connecting them to their source of truth. Customer service Al training uses relational
structures to link examples to specific products and policies they reference. When
information changes, this makes it easy to identify and update affected training
examples, preventing the model from learning contradictory or outdated information
that leads to hallucinations.

e Time series databases: Preserve chronological context essential for understanding
causality in sequential data. For example, a utility company looking to create forecasting
models leverage time series databases to maintain the temporal relationships between
weather patterns, consumption rates, and grid demand. This allows models to learn that
temperature spikes precede demand surges by specific intervals—causal patterns that
would be lost if examples were processed as isolated data points.

e Databases with integrated vector search: Simplify training workflows when examples
combine different data types. Retail recommmendation engines, for example, benefit from
databases that combine a more typical operational data model with vector search. They
seamlessly integrate product descriptions (text), purchase history (relational), and visual

similarity (vector) in a unified system.

Memory for Stateful Al Agents

What it is: A database-driven system that gives LLMs persistent memory across interactions by
storing and retrieving conversation history, user preferences, and interaction context. Think of it
as a specialized form of RAG focused on user-specific data rather than general knowledge.

Why it's needed: LLMs exist in a world between stateless and stateful. They can maintain
context within a single session, up to a point, but even then you can't rely on them to remember
things faithfully. Between sessions, LLMs are entirely stateless.

But that doesn't have to limit the scope of your GenAl apps. Instead, you can use databases to

store context between sessions and then replay that as part of the prompt you give the model.

tidb.io 1

This is particularly important for applications requiring continuous interaction or

relationship-building, like virtual assistants, customer support, or educational tools.

Example: A healthcare companion chatbot that remembers your specific health history. So, you
can ask, “Is my blood pressure lower this month?” and get an accurate answer without having to
re-explain your medical situation.

How it works with databases: Think of this as "personal RAG". Instead of retrieving more
general knowledge, you're retrieving a specific user's history. Your database becomes the Al's
long-term memory, storing conversations and preferences that would otherwise be forgotten.
When a user asks a question, your app first checks the database for relevant history before

sending the prompt to the LLM.

Best database types for similarity search:

e Vector databases: Implement "memory search’ where agents need to retrieve relevant
past interactions based on meaning rather than exact terms. They excel at answering
queries like "What did | tell you about my project timeline?" by finding semantically
similar conversations without requiring precise keywords.

e Document stores: Ideal for storing complete conversation histories in sequence,
preserving the full context of past interactions. Their schema flexibility allows for
evolving conversation structures and metadata as the agent's capabilities grow, without
requiring database restructuring.

e Relational databases: Power the factual knowledge base of Al agents, maintaining
structured records of facts about users and their preferences. They particularly shine in
long-term relationships where the agent needs to track changing user details across
dozens or hundreds of interactions.

e Databases with integrated vector search: Solve the challenges of latency and
architectural complexity by integrating different data models in one system. For
responsive Al agents that need sub-second recall, combining vector search with
structured and unstructured storage in a unified database keeps perceived intelligence

high by eliminating the delays from coordinating across multiple specialized systems.

tidb.io 2

Database technologies powering genAl

applications

Building generative Al applications requires both specialized databases and familiar systems used
in new ways. This means evolving roles for your relational and document databases, and potentially
introducing dedicated vector databases.

For many teams, that means choosing between adding vector capabilities to your existing
operational data or adding a dedicated vector database to your stack. Each option involves

different tradeoffs in terms of performance, operational complexity, and development workflow

Vector databases

What they are: Purpose-built engines for storing, indexing, and querying vector embeddings—the
numerical representations of text, images, or audio that capture semantic meaning in
high-dimensional space.

Key strengths:

e Getresults even with imprecise queries: Deliver relevant results based on semantic
matching rather than lexical matching.

e Data structure is emergent: Feeding your data through an embedding algorithm
automatically creates a semantic map of your data in vector space.

e Improve with metadata: You can add to the vector search with metadata to filter results
by category, date range, or other attributes, giving you more control over the results.

e Query performance at scale: Using specialized algorithms and indexing, most vector
databases can maintain millisecond response times even with millions of vectors.

Notable limitations:

e Limited data manipulation: Most standalone vector databases act as an index to your
data, helping you retrieve data, but they lack support for complex transactions, updates,
and joins that traditional databases provide.

e Trade-offs between accuracy and performance: Algorithms like Approximate Nearest
Neighbor sacrifice some precision for speed, which can impact result quality.

e Operational overhead: Running specialized vector databases alongside operational
databases adds monitoring, scaling, and maintenance complexity.

e Evolving ecosystem: Standards, best practices, and tooling are still maturing compared to

established database technologies.

tidb.io 13

Example databases:

e Pinecone: A proprietary vector database service that focuses on simplicity and scalability.
Provides serverless deployment options, specialized indexing algorithms, and REST APIs for
integrating vector search into applications without managing infrastructure.

e Milvus: An open-source vector database with strong community support. Offers flexible
deployment options (self-hosted or cloud), multiple indexing algorithms, and scalar filtering
capabilities. Designed for high throughput and horizontal scaling.

e Qdrant: Open-source vector database with an emphasis on extended filtering capabilities
and flexible payload storage alongside vectors. Features include binary quantization for
storage optimization and a lightweight footprint suitable for both cloud and edge

deployments.

Document stores

What they are: Schema-free and built for flexibility, these databases handle JSON and
unstructured data, making them ideal for storing both the text that models train on and the
context they retrieve.
Key strengths:
e RAG-optimized storage: Excel at storing and retrieving the full text chunks that LLMs
need for context windows, with flexible schemas for both content and metadata.
e Semantic chunking management: Maintain relationships between chunks, parent
documents, and their vector representations, crucial for effective retrieval augmentation.
e Hybrid search capabilities: Many document stores now integrate vector search
alongside traditional text search, enabling combined lexical and semantic matching in a
single query.
e Adaptation without migration: Support evolving Al application needs without disruptive
schema changes or migrations.
Best for these Al use cases:
e Chunk optimization challenges: Requires careful tuning of chunk sizes to balance
context relevance with retrieval precision
e Complex relationship modeling: May struggle with maintaining the complex relationships
between entities that LLMs reference
e Consistency trade-offs: Some document stores sacrifice strong consistency for
performance, complicating certain Al workflows
e Read/write balance: RAG workloads tend to be read-heavy, requiring different

optimization strategies than traditional applications

tidb.io 14

Notable limitations:

e Limited data manipulation: Most standalone vector databases act as an index to your
data, helping you retrieve data, but they lack support for complex transactions, updates,
and joins that traditional databases provide.

e Trade-offs between accuracy and performance: Algorithms like Approximate Nearest
Neighbor sacrifice some precision for speed, which can impact result quality.

e Operational overhead: Running specialized vector databases alongside operational
databases adds monitoring, scaling, and maintenance complexity.

e Evolving ecosystem: Standards, best practices, and tooling are still maturing compared to

established database technologies.

Relational databases

What they are: Your app’s system of record also has a role in supporting GenAl operations.
Whether through RAG or finetuning, the data in your relational database can augment your LLM
prompts to give you more accurate responses grounded in the factual data of your application.
The backbone of application development for the past few decades, relational databases have a
new role in GenAl pipelines, particularly where consistency, transactions, and integration with
existing systems are critical.
Key strengths:
e Structured knowledge bases: Excel at providing factual, structured information to ground
LLM outputs, reducing hallucination through reliable data retrieval.
e Strong consistency and transactions: Ensures data integrity for Al operations where
accuracy is non-negotiable.
e Precise querying: Complex SQL queries can retrieve exactly the structured data needed
for Al context, improving relevance.
Best for these Al use cases:
e Fine-tuning: Managing structured training datasets with high quality requirements,
tracking data provenance and annotations.
e Memory for Al agents: Tracking user profiles and preferences reliably.
e RAG for structured data: Retrieving structured information like product catalogs or
financial data.
e Orchestration and tracking: Logging prompt execution history, model performance
statistics, and usage patterns.

Notable limitations:

tidb.io 1

e Query complexity for semantic contexts: Constructing SQL queries that effectively

retrieve relevant context for LLMs often requires complex joins and query logic.
e Structured vs. unstructured tension: Relational schemas are great for structured data
but can become unwieldy when handling the variable-length text chunks needed for RAG.
e Semantic understanding gaps: Relational models represent explicit relationships well but

struggle with the implicit semantic connections that embedding models capture naturally.

Databases with integrated vector search

What they are: The practical default for most GenAl applications: familiar relational or document
databases that have added vector embedding capabilities. Rather than introducing an entirely new
database technology, these solutions let you use your existing operational database systems with
extensions that add vector search.

Key strengths:

e Easy to adopt: Add GenAl capabilities to your stack without learning, integrating, and
operating an entirely new database system.

e Unified data management: Keep your application data and vector embeddings in sync
automatically without complex ETL processes.

e Simplified infrastructure: Maintain one database system instead of separate operational
and vector databases.

e Reduced end-to-end latency: Eliminate network hops between separate operational
and vector databases, keeping response times low.

Notable limitations:

e Performance ceiling: May not match specialized vector databases for applications
requiring extreme scale (billions of vectors).

e Feature depth trade-offs: Might lack some advanced vector indexing algorithms or
distance metrics available in dedicated solutions.

Example databases:

e TiDB Serverless: A cloud-native SQL database that combines OLTP, OLAP and vector
search capabilities with automatic scaling and pay-as-you-go pricing.

e PostgreSQL + pgvector: A popular option for teams with existing PostgreSQL
deployments, providing vector search capabilities integrated with a familiar relational
engine.

e MongoDB Atlas with vector search: Combines document flexibility with integrated vector

operations for teams already in the MongoDB ecosystem.

tidb.io 16

Typical ETL (Extract, Transform, Load) pipelines are mostly about moving data so it can be used in

a different context. The GenAl data pipeline not only moves data but finds the meaning within it.
The result is that, while traditional ETL focuses on data correctness, GenAl pipelines need to

preserve meaning with ongoing improvements.

How the GenAl data pipeline differs from ETL

Traditional ETL GenAl Pipeline Why It Matters

Data correctness Context preservation GenAl needs narrative flow, not just accurate
values
Schema-driven Recursive improvement Systems learn from usage patterns and
feedback
Schema-driven Meaning-aware Semantic relationships emerge rather than

being defined

The stages of the GenAl data pipeline

1. Data Ingestion 2. Content Extraction 3. Text Chunking 4. Embedding Gen
Raw Data Collection Parsing and Cleaning Segment Documents Vector Creation
5. Vector Indexing 6. Metadata Indexing
e s s : Similarity Structure Filtering Structure
8. Feedback 7. Query Processing
Pipeline Optimization Retrieval and Ranking

tidb.io 7

Data ingestion

The source and quality of your data fundamentally determine what your Al can understand.
This first stage collects raw data from various sources and prepares it for processing in the
pipeline.
e Common pitfall: Ingesting low-quality data that later propagates through the entire
pipeline
e Tools and technologies:
o Connectors: Airbyte, Fivetran, custom API clients
o Data lakes: S3, Azure Blob Storage, Google Cloud Storage
o Streaming platforms: Kafka, Kinesis for real-time data ingestion
e Considerations:
o Source reliability and data freshness
o Data quality validation at ingestion time
o Handling different file formats and encodings

o Real-time vs. batch ingestion requirements

Content extraction and cleaning

Structured, clean data is essential for effective downstream processing.
This stage parses raw content, extracts text and metadata, and standardizes formats for further
processing.
e Common pitfall: Losing valuable context during cleaning processes
e Tools and technologies:
o Document parsers: Apache Tika, Unstructured.io, BeautifulSoup
o ETL tools: dbt, Apache NiFi
o Cloud services: AWS Textract, Google Document Al
e Considerations:
o Text normalization and noise removal
o Maintaining document structure during extraction
o Handling multi-modal content (text, tables, images)

o Balancing processing depth with throughput requirements

tidb.io 18

Text chunking and segmentation

How you divide content directly impacts retrieval effectiveness.
This stage breaks down documents into optimally sized pieces that can be embedded and later
retrieved.
e Common pitfall: Creating chunks that are either too large (diluting relevance) or too small
(losing context)
e Tools and technologies:
o Text processors: LangChain text splitters, NLTK sentence tokenizers
o NLP libraries: spaCy, Stanza for linguistic-aware splitting
o Custom processors: Domain-specific chunking algorithms
e Considerations:
o Chunk size optimization for context windows
o Semantic vs. fixed-length chunking approaches
o Document structure preservation across processing

o Handling structured data and non-text elements

Embedding generation

Converting text to vector representations enables semantic understanding.
This stage transforms text chunks into numerical vectors that capture semantic meaning.
e Common pitfall: Using generic embedding models for domain-specific content
e Tools and technologies:
o Embedding models: OpenAl's text-embedding-ada-002, BERT, BGE
o Batch processors: Ray, Apache Spark for distributed processing
o Vector optimization: Dimensionality reduction, quantization tools
e Considerations:
o Chunk size optimization for context windows
o Semantic vs. fixed-length chunking approaches
o Document structure preservation across processing

o Handling structured data and non-text elements

tidb.io 19

Vector indexing and storage

Efficient vector storage and indexing directly impacts retrieval performance.
This stage organizes vectors in specialized data structures optimized for similarity search.
e Common pitfall: Choosing a standalone vector database when an operational database
with integrated vector search would be more efficient.
e Tools and technologies:
o Vector databases: Pinecone, Milvus, Qdrant, Weaviate
o Operational databases with integrated vector search: TiDB Serverless,
PostgreSQL with pgvector, MongoDB Atlas Vector Search
o Indexing algorithms: HNSW, IVF, FAISS indexes
e Considerations:
o Index type selection based on query patterns
o Query latency requirements at production scale
o Index build time vs. query performance tradeoffs

o Storage requirements and scaling strategy

Metadata indexing

Combining vector search with metadata filtering enables precise retrieval.
This parallel stage indexes document metadata to support hybrid search strategies.
e Common pitfall: Overlooking metadata's role in filtering and enhancing retrieval
e Tools and technologies:
o Search engines: Elasticsearch, OpenSearch, Solr
o Relational databases: TiDB Serverless, PostgreSQL, MySQL for structured
metadata
o Vector search solutions: Vector search with metadata filtering
e Considerations:
o Schema design for filtering efficiency
o Integration between vector and metadata search
o Metadata schema flexibility for evolving requirements

o Index optimization for common query patterns

tidb.io

20

Query processing and retrieval

Transforming user questions into effective queries determines result quality.
This stage converts input questions into search queries that use both vector and metadata
indexes.
e Common pitfall: Relying solely on vector similarity without metadata filtering
e Tools and technologies:
o Retrieval frameworks: LangChain, Llamalndex
o Rerankers: Cohere Rerank, Cross-encoders
o Query routers: Multi-index routing systems
e Considerations:
o Query expansion and hybrid search strategies
o Balancing recall vs. precision in results
o Performance optimization for complex queries

o Re-ranking and result diversity approaches

Feedback integration and pipeline optimization

Continuous learning from query patterns and user feedback improves performance.
This final stage captures performance metrics and user feedback to optimize earlier pipeline
stages.
e Common pitfall: Building a static pipeline without feedback incorporation
e Tools and technologies:
o Analytics platforms: Weights & Biases, MLflow
o Feedback collectors: Argilla, custom feedback loops
o A/B testing frameworks: Optimizely, LaunchDarkly
e Considerations:
o Feedback collection methodologies
o Metrics definition for pipeline performance
o Identifying bottlenecks across pipeline stages

o Balancing stability with continuous improvement

tidb.io 21

Making the right GenAl database choice in 3 steps

Step 1: What is your primary use case?

e RAG (Retrieval Augmented Generation): Dynamically retrieving relevant context from

your data to augment LLM prompts.

e Similarity search: Using vector embeddings to find semantically related content rather

than exact keyword matches.

e Fine-tuning and model training: Creating, managing, and processing datasets for

specialized model training.

e Memory for stateful Al agents: Maintaining persistent context and user-specific

information across interactions.

Step 2: Assess your operational reality

Practical factor Questions to ask

Existing database
investment

Team expertise
Operational overhead
Data consistency

Total cost of ownership

What databases already power your core applications?

What database skills does your team already have?

Do you have the capacity to integrate and manage another system?

How important is it that Al features use the latest operational data?

What are the full costs of additional systems versus extending existing

ones?

Step 3: Make your technology decision

Add vector
capabilities to
existing DB

Specialized vector
database

tidb.io

* Your app already uses
relational/document DB+ You need
Al features that use operational
data+ Consistency between Al and
app data is critical* You want to
minimize infrastructure complexity

* You're building a pure Al
application® You need sub-10ms
search across billions of vectorss
Your vectors rarely change and
don't need strong consistency with
operational data

+ You need specialized vector algorithms
beyond basic nearest-neighbor searche
You're processing billions of vectors with
strict latency requirements

* Your Al features need to join with
operational datas You want to minimize
infrastructure complexity+ Your team lacks
bandwidth to maintain another system

22

Unifying your GenAl data infrastructure with TiDB

Serverless

We've seen how apps built around generative Al have complex data storage and processing needs.
That can mean bringing together multiple database tools, with the learning curve, integration, and

operational headaches associated.

The challenge

Most GenAl applications require:
e \Vector storage for embeddings and semantic search
e Relational data for operational needs
e Document stores for unstructured content
Managing these separately can lead to data synchronization issues, operational complexity, and

consistency problems.

TiDB Serverless: Simplifying your GenAl data architecture

Integrated vector search and SQL

e Store and query embeddings alongside relational data
e Combine semantic similarity with precise SQL filtering

e Apply business logic without crossing system boundaries

Developer-friendly experience

Search for similar products within a category

results = session.execute(

select(Product.name, Product.description)
.where(Product.category == "electronics”)
.order_by(Product.embedding.cosine_distance([0.], 0.2, ..]))
Aimit(5)

)all()

tidb.io 23

Operational advantages

Automatic scaling with zero cost when idle
No capacity planning or provisioning required
High availability across availability zones

Pay only for actual usage (storage and request units)

Real-world impact: Dify.Al

Dify.Al, a leading LLMOps platform serving hundreds of thousands of users, unified their vector and

relational data with TiDB Serverless, achieving:

Consistent performance across 100M+ records
Simplified infrastructure management
Reduced engineering resources

Predictable scaling with variable workloads

"With TiDB, our users can concentrate on building their GenAl apps rather than worrying about

setup. The scale-to-zero capability lets us provide dedicated databases without the burden of idle

resource costs.”

— Luyu Zhang, Founder & CEO, Dify.Al

When TiDB Serverless makes sense

Consider TiDB Serverless when your GenAl project:

Needs both operational data and vector capabilities
Requires consistent data between vectors and structured records
Has variable workload demands

Would benefit from simplified infrastructure management

By unifying your GenAl data infrastructure, you can focus on building intelligent applications rather

than managing the complexity of multiple specialized databases.

tidb.io

24

Appendix

Your guide to GenAl database terminology

Generative Al comes with its own terminology. While much of it will be familiar or easy to decode,

there's a glossary of the terms you'd like to encounter when working with data for GenAl

applications.

Fundamentals

K2
**

Embedding: A numerical vector that represents the meaning of text, images, or other data.
Similar content has similar embeddings, making it possible to find similar content.

Vector database: A database optimized for storing, indexing, and querying embedding
vectors using specialized algorithms that enable similarity search at scale.

RAG (Retrieval Augmented Generation): A technique that pulls relevant information from
a database to give an LLM the context it needs for a specific query, rather than relying

solely on its training data.

Vector storage and retrieval

KD
o

.
o

K2
**

.
o

Vector indexing: Specialized data structures that organize vectors for efficient similarity
search, unlike traditional B-tree indexes used in relational databases.

ANN (Approximate Nearest Neighbor): Algorithms that find similar vectors quickly by
trading perfect accuracy for speed—essential for production GenAl applications where
milliseconds matter.

Distance metrics: Methods for measuring how similar two vectors are, like cosine
similarity (which compares the angle between vectors) or Euclidean distance (which
measures straight-line distance). For example, cosine similarity is useful in text search to
find documents with similar meaning, while Euclidean distance is often used in image
retrieval to find visually similar items.

Vector filtering: Adding metadata constraints to vector searches, such as "find content

similar to this query, but only from this year's documents.’

RAG database concepts

R
%

tidb.io

Chunking strategies: Ways to break documents into smaller pieces for embedding and

retrieval, balancing context preservation with precision. For example, chunking a legal

25

¥,
**

contract into small T100-token pieces helps pinpoint specific clauses precisely, but loses

surrounding context. Larger 1000-token chunks preserve context but may dilute relevance
scoring by including too much extraneous text.

Retrieval context window: The maximum amount of retrieved text that can be included in
a prompt to an LLM before hitting token limits. This constraint directly impacts how your
database should chunk and retrieve content—smaller chunks allow for more diverse
context but risk fragmenting important information, while larger chunks preserve more
context but limit how many distinct sources you can include

Hybrid search: A technique combining traditional keyword search (finding exact text
matches) with vector similarity search (finding semantic similarities) to deliver more
comprehensive results. For example, searching for "database migration” would match both
exact keyword occurrences and conceptually related content about "moving data between
systems” that keyword search alone might miss. Not to be confused with hybrid
operational/analytical database architectures.

Document metadata: Additional information stored with embeddings that enables

filtering, attribution, and versioning in GenAl applications.

Integration patterns

R
o

¥,
**

Embedding pipeline: The workflow for converting raw content (like text or images) into
vector embeddings and storing them in your database. This typically includes steps for
cleaning and preprocessing content, sending it through an embedding model to generate
vectors, and then saving those vectors with appropriate metadata for later retrieval.
Vector synchronization: How to keep embeddings up-to-date when source content
changes, without rebuilding your entire index.

Semantic caching: Storing results of similar previous queries to speed up responses and
reduce database load.

Cross-encoder reranking: A technique that improves search quality by using a second
model to score and reorder initial database results. While databases quickly retrieve
candidates using vector similarity, the cross-encoder evaluates each (query, result) pair
more thoroughly to provide more accurate relevance rankings—trading speed for precision

in the final results shown to users.

Performance considerations

tidb.io

26

K2
L X4

O,
%

tidb.io

Recall@k: The percentage of truly relevant documents your database retrieves within the

top-k results. For example, if there are 10 relevant documents for a query and your system
finds 8 of them in the top-20 results, your recall@20 is 80%. This metric directly impacts
how comprehensively your GenAl application can access relevant information.

Vector cardinality: The total number of vector embeddings stored in your database. A
production RAG system might contain millions of vectors, each representing a document
chunk. As cardinality increases, query performance typically degrades unless your
database uses specialized indexing techniques to maintain speed at scale.
Dimensionality: The number of numerical values in each vector (typically 768-1536 for
today’s embedding models). Higher dimensionality vectors capture more nuance but take
up more storage and processing. For example, a database with 1 million chunks using
1536-dimensional vectors requires at least 6GB of raw vector storage before indexing
overhead.

Quantization: Techniques for compressing vectors by reducing numerical precision while
preserving similarity relationships. For instance, converting 32-bit floating-point numbers
to 8-bit integers can reduce storage requirements by 75% with minimal impact on retrieval
quality, allowing databases to handle larger document collections with less impact on

resources.

27

	
	
	
	
	
	
	GenAI Data Pipelines: The Engineer's Guide to Database Selection
	Table of Contents
	Prologue
	Why traditional databases aren’t up to the GenAI job
	Core GenAI database concepts
	Vector embeddings
	Semantic search
	Context windows

	GenAI database use cases
	RAG (Retrieval Augmented Generation)
	Similarity search
	Fine-tuning and model training
	Memory for Stateful AI Agents

	Database technologies powering genAI applications
	Vector databases
	Document stores
	Relational databases
	Databases with integrated vector search
	How the GenAI data pipeline differs from ETL
	The stages of the GenAI data pipeline
	
	
	Data ingestion
	Content extraction and cleaning
	
	Text chunking and segmentation
	Embedding generation
	
	Vector indexing and storage
	Metadata indexing
	
	Query processing and retrieval
	Feedback integration and pipeline optimization

	Making the right GenAI database choice in 3 steps
	Step 1: What is your primary use case?
	Step 2: Assess your operational reality
	Step 3: Make your technology decision

	Unifying your GenAI data infrastructure with TiDB Serverless
	The challenge
	TiDB Serverless: Simplifying your GenAI data architecture
	Integrated vector search and SQL
	Developer-friendly experience
	
	Operational advantages
	Real-world impact: Dify.AI
	When TiDB Serverless makes sense
	Appendix

	Your guide to GenAI database terminology
	Fundamentals
	Vector storage and retrieval
	RAG database concepts
	Integration patterns
	Performance considerations

